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Abstract
We use boundary quantum group symmetry to obtain recursion formulae
which determine nondiagonal solutions of the boundary Yang–Baxter equation
(reflection equation) of the XXZ type for any spin j .

PACS numbers: 02.20.Uw, 02.30.Ik, 03.70.−a, 11.10.−z, 75.10.Jm

1. Introduction

Solutions R(u) of the Yang–Baxter equation

R12(u − v)R13(u)R23(v) = R23(v)R13(u)R12(u − v) (1.1)

play a central role in the study of bulk integrable quantum field theories and solvable lattice
models (see, e.g., [1–4]). For simplicity we restrict our attention in this letter to the XXZ case,
which is related to the affine Lie algebra A

(1)
1 . Although early investigations focused on the

fundamental (spin 1
2 ) representation

R( 1
2 , 1

2 )(u) =




sinh(u + η) 0 0 0
0 sinh u sinh η 0
0 sinh η sinh u 0
0 0 0 sinh(u + η)


 (1.2)

(where η is the so-called anisotropy parameter), attention soon turned also to higher-
dimensional representations. The spin 1 R matrix was obtained [5] by direct solution of the
Yang–Baxter equation (1.1). A ‘fusion’ procedure for R matrices was subsequently developed
in [6, 7]. However, it was not until a quantum group approach was formulated by Kulish
and Reshetikhin [8] that explicit formulae for R matrices of arbitrary spin became available.
The key feature of this approach is that it linearizes the problem of finding solutions of the
Yang–Baxter equations. This work initiated the study of quantum groups (see, e.g., [9–11]),
and seeded important developments in integrable quantum field theory (see, e.g., [12, 13]).
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Solutions K(u) of the boundary Yang–Baxter equation

R12(u − v)K1(u)R12(u + v)K2(v) = K2(v)R12(u + v)K1(u)R12(u − v) (1.3)

play a corresponding role for quantum integrable models with boundary [14–16]. The
(nondiagonal) fundamental representation

K( 1
2 )(u) =

(
sinh(ξ + u) κ sinh 2u

κ sinh 2u sinh(ξ − u)

)
(1.4)

(where ξ and κ are boundary parameters) was found [16, 17] by direct solution of (1.3), as was
the spin 1 result [18]. A fusion procedure for K matrices was developed in [19–21]. However,
the problem of finding explicit formulae for K matrices of arbitrary spin has so far remained
unsolved. Some partial results include work on the so-called reflection algebra [22, 23] and
on Liouville theory for open strings [24].

We present here some further progress on this problem. Namely, we obtain recursion
formulae which determine the matrix elements of K(j)(u) for any spin j . Our approach,
generalizing the one used to solve the corresponding bulk problem [8], is based on ‘boundary
quantum groups’ [25, 26]. One application of this result is to determine certain coefficients
appearing in the Bethe ansatz solution [27] of the open XXZ quantum spin chain with
nondiagonal boundary terms at roots of unity.

In section 2 we review the construction of the quantum group generators which commute
with the R matrix (1.2) and its higher-spin generalization. In section 3 we first recall [25]
the combinations of these quantum group generators which commute with the K matrix
(1.4). By demanding that these same combinations of generators also commute with K(j)(u),
we obtain a set of linear relations, which we then solve for the matrix elements K

(j)
mn(u).

In section 4 we apply these results to the problem of the open XXZ quantum spin chain
with nondiagonal boundary terms at roots of unity. We end with a brief discussion in
section 5.

2. The bulk case

In this section, we review the construction [8, 13] of the quantum group generators which
commute with the R matrix (1.2) and its higher-spin generalization. To this end, it is convenient
to introduce the two-component Faddeev–Zamolodchikov ‘particle-creation operators’

A(u) =
(

A+(u)

A−(u)

)

in terms of which the R matrix R( 1
2 , 1

2 )(u) can be defined by

A(u1) ⊗ A(u2) = Ř( 1
2 , 1

2 )(u)A(u2) ⊗ A(u1) (2.1)

where Ř( 1
2 , 1

2 ) = PR( 1
2 , 1

2 ), P is the permutation matrix and u = u1 − u2. Associativity of the
products in A(u1) ⊗ A(u2) ⊗ A(u3) then leads [1] to the Yang–Baxter equation (1.1).

Let us assume the following commutation relations of the quantum group generators Q±,
Q̄± and T with the particle-creation operators

Q±A(u) = q±σ3A(u)Q± + euσ∓A(u)

Q̄±A(u) = q∓σ3A(u)Q̄± + e−uσ∓A(u) (2.2)

T A(u) = A(u)T + σ3A(u)
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where

q = eη (2.3)

and σ± = 1
2 (σ1 ± iσ2). Associativity of the products in QA(u1) ⊗ A(u2)|0〉 and invariance of

the vacuum Q|0〉 = 0 (where Q = Q±, T or Q = Q̄±, T ); or, equivalently,[
Ř( 1

2 , 1
2 )(u),�(Q)

]
= 0 (2.4)

(where � is the comultiplication) leads to the R matrix (1.2).
This construction generalizes to arbitrary spin j ∈ {

1
2 , 1, 3

2 , . . .
}
. We introduce the

(2j + 1)-component particle-creation operators Ã(u), in terms of which the R matrix R( 1
2 ,j)(u)

can be defined by

A(u1) ⊗ Ã(u2) = Ř( 1
2 ,j)(u)Ã(u2) ⊗ A(u1) (2.5)

where Ř( 1
2 ,j) = R( 1

2 ,j)P , and P is a 2(2j + 1) × 2(2j + 1) matrix which satisfies

P(M̃ ⊗ N)P−1 = N ⊗ M̃ (2.6)

where M̃ and N are arbitrary (2j + 1) × (2j + 1) and 2 × 2 matrices, respectively.
We assume the commutation relations

Q±Ã(u) = q±2HÃ(u)Q± + eu+ η

2 q±HE∓Ã(u)

Q̄±Ã(u) = q∓2HÃ(u)Q̄± + e−u− η

2 q∓HE∓Ã(u) (2.7)

T Ã(u) = Ã(u)T + 2HÃ(u)

where the matrices H and E± have matrix elements

(H)mn = (j + 1 − n)δm,n m, n = 1, 2, . . . , 2j + 1 (E+)mn = ωmδm,n−1

(E−)mn = ωnδm−1,n ωn = √
[n]q[2j + 1 − n]q (2.8)

and

[x]q = qx − q−x

q − q−1
. (2.9)

These matrices form a (2j + 1)-dimensional representation of the Uq(su(2)) algebra

[H,E±] = ±E± [E+, E−] = [2H ]q. (2.10)

For j = 1
2 , the relations (2.7) reduce to (2.2). Associativity of the products in QA(u1) ⊗

Ã(u2)|0〉 and invariance of the vacuum Q|0〉 = 0 (where Q = Q±, T or Q = Q̄±, T ) leads
to the R matrix [8]

R( 1
2 ,j)(u) = sinh(η)(σ+ ⊗ E− + σ− ⊗ E+) + sinh

(
u +

(
1
2 + σ3 ⊗ H

)
η
)
. (2.11)

3. The boundary case

Having reviewed the construction of the quantum group generators which commute with the
R matrix, we now turn to the boundary case. The matrix K( 1

2 )(u) can be defined by [16]

A(u)|0〉B = K( 1
2 )(u)A(−u)|0〉B (3.1)

where |0〉B is the vacuum (ground state) in the boundary case. Associativity of the products
in A(u1) ⊗ A(u2)|0〉B then leads [16] to the boundary Yang–Baxter equation (1.3).
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Following [25], we consider the combinations of quantum group generators

Q̂ = Q̄+ + Q− − e−ξ

2κ sinh η
q−T

(3.2)

Q̂′ = Q̄− + Q+ +
eξ

2κ sinh η
qT

which generate the boundary quantum group. Indeed, associativity of the products in
Q̂A(u)|0〉B and Q̂′A(u)|0〉B , together with invariance of the vacuum Q±|0〉B = Q̄±|0〉B =
T |0〉B = 0, imply (using the commutation relations (2.2)) the K matrix (1.4).

The spin j matrix K(j)(u) can similarly be defined by

Ã(u)|0〉B = K(j)(u)Ã(−u)|0〉B. (3.3)

Associativity of the products in Q̂Ã(u)|0〉B and Q̂′Ã(u)|0〉B and invariance of the vacuum
imply (using the commutation relations (2.7))(

e−u− η

2 q−HE− + eu+ η

2 q−H E+ − e−ξ

2κ sinh η
q−2H

)
K(j)(u)

= K(j)(u)

(
eu− η

2 q−HE− + e−u+ η

2 q−H E+ − e−ξ

2κ sinh η
q−2H

)
(3.4)

and(
e−u− η

2 qHE+ + eu+ η

2 qHE− +
eξ

2κ sinh η
q2H

)
K(j)(u)

= K(j)(u)

(
eu− η

2 qHE+ + e−u+ η

2 qHE− +
eξ

2κ sinh η
q2H

)
(3.5)

respectively. Making use of the explicit expressions (2.8) for the matrix elements of H and
E±, we obtain the relations

e−u−η(j+ 3
2 −m)ωm−1K

(j)

m−1,n(u) + eu−η(j+ 1
2 −m)ωmK

(j)

m+1,n(u) − e−ξ

2κ sinh η
e−2η(j+1−m)K(j)

mn(u)

= eu−η(j+ 1
2 −n)ωnK

(j)

m,n+1(u) + e−u−η(j+ 3
2 −n)ωn−1K

(j)

m,n−1(u)

− e−ξ

2κ sinh η
e−2η(j+1−n)K(j)

mn(u) (3.6)

and

e−u+η(j+ 1
2 −m)ωmK

(j)

m+1,n(u) + eu+η(j+ 3
2 −m)ωm−1K

(j)

m−1,n(u) +
eξ

2κ sinh η
e2η(j+1−m)K(j)

mn(u)

= eu+η(j+ 3
2 −n)ωn−1K

(j)

m,n−1(u) + e−u+η(j+ 1
2 −n)ωnK

(j)

m,n+1(u)

+
eξ

2κ sinh η
e2η(j+1−n)K(j)

mn(u) (3.7)

where K
(j)
mn(u) denotes the (m, n) matrix element of K(j)(u). It is understood that these matrix

elements vanish for index values outside the range [1, 2j + 1].
The relations (3.6) and (3.7) determine the matrix K(j)(u), up to an overall unitarization

factor which does not concern us here. Indeed, we find that this matrix is symmetric
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K
(j)
mn(u) = K

(j)
nm(u), and3

K(j)
mn(u) = κn−m

√√√√n−m−1∏
l=0

sinh((2j − m + 1 − l)η)

sinh((n − 1 − l)η)

m−2∏
l=0

sinh((n − 1 − l)η)

sinh((m − 1 − l)η)

×
n−m−1∏

l=0

sinh(2u − lη)

2j−n∏
l=0

sinh

(
ξ + u +

(
l − j +

1

2

)
η

)

×
m−2∏
l=0

sinh

(
ξ − u −

(
l − j +

1

2

)
η

)
J (j)

mn (u),

m, n = 1, 2, . . . , 2j + 1 n � m (3.8)

where the quantities J
(j)
mn (u) are given by

J (j)
mn (u) =

[ 2j+m−n

2 ]∑
k=0

κ2kJ (j,k)
mn (u) J (j,0)

mn (u) = 1. (3.9)

Finally, let us describe the quantities J
(j,k)
mn (u) for k � 1: for m = 1, they are given by

J
(j,k)

1,n (u) =
2j−1−n∑

l1=0

2j−1−n∑
l2=l1+2

. . .

2j−1−n∑
lk=lk−1+2

Fl1(u, j ; n)Fl2(u, j ; n) . . . Flk (u, j ; n) (3.10)

where

Fl(u, j ; n) = sinh(2u − (n + l)η) sinh((2j − n − l)η)

sinh
(
ξ + u +

(
j + 1

2 − n − l
)
η
)

sinh
(
ξ + u +

(
j − 1

2 − n − l
)
η
) . (3.11)

For m � 2, these quantities are determined (in terms of the quantities with m = 1 (3.10)) by
the recursion relations

J (j,k)
mn (u) = a(j)

mn(u)J
(j,k)

m−1,n−1(u) + b(j)
mn(u)J

(j,k)

m−1,n(u) + c(j)
mn(u)J

(j,k−1)

m−2,n (u)
(3.12)

m = 2, 3, . . . , 2j + 1

where

a(j)
mn(u) = sinh

(
ξ + u +

(
j − n + 3

2

)
η
)

sinh(2u + η)

sinh((n − m + 1)η) sinh
(
ξ − u +

(
j − m + 3

2

)
η
)

b(j)
mn(u) = − sinh

(
ξ + u +

(
j − m + 5

2

)
η
)

sinh(2u − (n − m)η)

sinh((n − m + 1)η) sinh
(
ξ − u +

(
j − m + 3

2

)
η
)

(3.13)
c(j)
mn(u) = − sinh((m − 2)η) sinh((2j − m + 3)η)

sinh((n − m + 2)η) sinh2((n − m + 1)η)

× sinh(2u + (n − m + 2)η) sinh(2u − (n − m + 1)η) sinh(2u − (n − m)η)

sinh
(
ξ − u +

(
j − m + 5

2

)
η
)

sinh
(
ξ − u +

(
j − m + 3

2

)
η
) .

The recursion relation (3.12) is satisfied for k = 0 by virtue of the identity

1 = a(j)
mn(u) + b(j)

mn(u). (3.14)

The recursion relations (3.6) and (3.7), and the expressions (3.8)–(3.13) for the matrix elements
of K(j)(u) constitute the main results of this letter. We have explicitly verified for values of
3 Due to the presence of the square root (which originates from the factors ωn (2.8)), we expect that for m �= n this
result is strictly valid only for η real. For η imaginary, some phase factors may appear.
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spin up to j = 2 that these results agree with those obtained by fusion [20, 21, 27], up to a
shift of the spectral parameter and an overall factor.

It is easy to see from equation (3.8) that K
(j)
mn(0) vanishes for m �= n; and, in fact,

is proportional to δmn, as follows from also equations (3.12), (3.13). Furthermore, the
dependence of K

(j)
mn(u) on the boundary parameter κ is given by ∼κ |n−m|, plus terms that

are of higher order in κ . Hence, for κ = 0, K
(j)
mn(u) is diagonal, and is entirely given by

equation (3.8)—no recursion relation is then needed, since the quantities J
(j,k)
mn (u) do not

depend on κ . We also remark that the symmetry K
(j)
nm(u) = K

(j)
mn(u) follows from the symmetry

of the equations (3.6), (3.7) under transposition of K and simultaneous relabelling n ↔ m.
As already observed in [16], one can break this symmetry and introduce a third parameter α

into the K matrix by performing a change of basis Ã(u) 	→ eiαH Ã(u). While this leaves the R
matrix unchanged, it transforms the entries of the K matrix as Kmn 	→ eiα(m−n)Kmn.

It is tempting to conjecture that there exist generalizations of the formulae (3.10), (3.11)
which are valid not just for m = 1, but for all values of m. Indeed, we have found that an
expression of the form

J (j,k)
mn (u) =

2j−1−n∑
l1=1−m

2j−1−n∑
l2=l1+2

. . .

2j−1−n∑
lk=lk−1+2

Fl1(u, j ; m,n)Fl2(u, j ; m,n) . . . Flk (u, j ; m,n) (3.15)

holds for values of m up to at least m = 4. However, we have not yet succeeded in finding
general formulae for the corresponding functions Fl(u, j ; m,n).

4. An application

One immediate application of our result is to determine certain coefficients appearing in the
Bethe ansatz solution of the open XXZ quantum spin chain with nondiagonal boundary terms,
defined by the Hamiltonian [15, 17]

H = 1

2

{
N−1∑
n=1

(
σx

n σ x
n+1 + σy

n σ
y

n+1 + cosh η σ z
nσ z

n+1

)

+ sinh η

(
coth ξ−σ z

1 +
2κ−

sinh ξ−
σx

1 − coth ξ+σ
z
N − 2κ+

sinh ξ+
σx

N

)}
. (4.1)

We recall [27] that for bulk anisotropy value

η = iπ

p + 1
, p = 1, 2, . . . (4.2)

(and hence q = eη is a root of unity, satisfying qp+1 = −1), the spin- p+1
2 transfer matrix

can be expressed in terms of a lower-spin transfer matrix, resulting in the truncation of the
fusion hierarchy. In order to obtain this crucial ‘truncation identity’ (which in turn leads to
a functional relation for the fundamental transfer matrix, and then finally to a set of Bethe
ansatz-like equations for the transfer-matrix eigenvalues), one needs some knowledge of the
matrix K(j)(u) with j = p+1

2 . In particular, for the (1, 1) matrix element, it was conjectured
in [27] that

K
(

p+1
2 )

11 previous(u) ∝ n(u; ξ, κ) = sinh((p + 1)(ξ + u))

+

[ p+1
2 ]∑

k=1

cp,k κ2k sinh((p + 1)u + (p + 1 − 2k)ξ) (4.3)
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where cp,k are some unknown coefficients. These coefficients were explicitly computed in
[27] for values of p up to p = 5, and they were found to be consistent with the formulae

cp,1 = p + 1
(4.4)

cp,2 = 1
2p(p − 1) − 1.

We have designated by ‘previous’ the K-matrix appearing in [27], in order not to confuse it
with the K-matrix used here, from which it differs by a shift of spectral parameter and an
overall factor,

K(j)
previous(u) ∝ K(j)

(
u +

(
j − 1

2

)
η
)
. (4.5)

Using our results (3.8)–(3.11) for m = n = 1, we obtain

K
(

p+1
2 )

11 previous(u) ∝ sinh((p + 1)(ξ + u))

×

1 +

[ p+1
2 ]∑

k=1

κ2k

p−1∑
l1=0

p−1∑
l2=l1+2

. . .

p−1∑
lk=lk−1+2

fl1(u; p)fl2(u; p) . . . flk (u; p)


 (4.6)

where

fl(u; p) = Fl

(
u +

(
j − 1

2

)
η, j ; 1

)∣∣∣∣
η= iπ

p+1 ,j= p+1
2

= − sinh(2u − (l + 2)η) sinh((l + 1)η)

sinh(ξ + u − (l + 2)η) sinh(ξ + u − (l + 1)η)

∣∣∣∣
η= iπ

p+1

. (4.7)

Using the identity
p−1∑
l1=0

p−1∑
l2=l1+2

. . .

p−1∑
lk=lk−1+2

fl1(u; p)fl2(u; p) . . . flk (u; p)

=
(

(p + 1)

k!

k−2∏
l=0

(p − k − l)

)
sinh((p + 1)u + (p + 1 − 2k)ξ)

sinh((p + 1)(ξ + u))
(4.8)

and comparing (4.6) and (4.8) with (4.3), we conclude that the coefficients cp,k are given by

cp,k = (p + 1)

k!

k−2∏
l=0

(p − k − l) = p + 1

k

(
p − k

k − 1

)
. (4.9)

This result is evidently consistent with (4.4).
With these coefficients in hand, the Bethe ansatz equations can be written down from [27]

for all the η values (4.2). In particular, it becomes possible to study the p → ∞ limit, for
which cp,k ∼ pk

k! .

5. Discussion

We have found expressions (3.8)–(3.13) for the matrix elements of K(j)(u), for arbitrary
spin j . Since the K matrix depends on two boundary parameters ξ and κ as well as the bulk
anisotropy parameter η, one should a priori expect the expression for the K matrix to be more
complicated than that of the R matrix (2.11). Our result certainly bears this out. Nevertheless,
we expect that it may be possible to simplify our result, perhaps along the lines of (3.15).
Indeed, a better understanding of the boundary quantum group symmetry may lead to a better
choice of variables with which to express the K matrix.
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